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Abstract We prove Boyd’s “unexpected coincidence” of the Mahler measures for two fam-
ilies of two-variate polynomials defining curves of genus 2. We further equate the same
measures to the Mahler measures of polynomials y3 − y + x3 − x + kxy whose zero loci
define elliptic curves for k �= 0,±3.
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Resumé Nous démontrons “coïncidence inattendue” de Boyd des mesures de Mahler pour
deux familles de polynômes à deux variables qui définissent les courbes de genre 2. En outre,
nous assimilons les mêmes mesures pour les mesures de Mahler de polynômes y3 − y +
x3 − x + kxy dont zéro loci définir des courbes elliptiques pour k �= 0,±3.

Mathematics Subject Classification Primary 11F67; Secondary 11F11 · 11F20 · 11G16 ·
11G55 · 11R06 · 14H52 · 19F27

Introduction

In his pioneering systematic study [2] of the Mahler measures of two-variate polynomials
Boyd has distinguished several special families, for which the measures are related to the
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L-values of the curves defined by the zero loci of the polynomials. The two particular families

Pk(x, y) = (x2 + x + 1)y2 + kx(x + 1)y + x(x2 + x + 1)

and

Qk(x, y) = (x2 + x + 1)y2 + (x4 + kx3 + (2k − 4)x2 + kx + 1)y + x2(x2 + x + 1)

are nicknamed in [2] as Family 3.2 and Family 3.5B, respectively. Generically, both
Pk(x, y) = 0 and Qk(x, y) = 0 define curves of genus 2 whose jacobians are isogenous to
the product of two elliptic curves. Computing the Mahler measures of Pk(x, y) and Qk(x, y)
numerically and identifying them as rational multiples of the L-values L ′(Ek, 0), where

Ek : y2 = x3 + (k2 − 24)x2 − 16(k2 − 9)x (1)

is isomorphic to one of the elliptic curves in the product for each of the two families, Boyd
observes the “unexpected coincidence” m(Pk) = m(Qk+2) for integer k in the range 4 ≤
k ≤ 33 (but not for k ≤ 3). The primary goal of this note is to confirm Boyd’s observation.

Theorem 1 For real k ≥ 4, we have m(Pk) = m(Qk+2).

Note that for k �= 0,±3 the curve Ek is elliptic and it is isomorphic to the elliptic curve
Rk(x, y) = 0, where the polynomial

Rk(x, y) = y3 − y + x3 − x + kxy

is tempered—all the faces of its Newton polygon are represented by cyclotomic polynomials.
The elliptic origin of the family Rk(x, y) and Beilinson’s conjectures predict [2,5] that, apart
from a finite set of k, the measure m(Rk) isQ-proportional to the L-value L ′(Ek, 0) for k ∈ Z

(in fact, even for k such that k2 ∈ Z as in any such case the curve Rk(x, y) = 0 possesses
the model defined over Z). Our next result unites the predictions with the findings of Boyd
in [2].

Theorem 2 For real k satisfying |k| ≥ 16/(3
√
3) = 3.0792 . . ., we have m(Pk) = m(Rk).

Noticing that P−k(x, y) = Pk(x,−y) and R−k(x, y) = Rk(−x,−y) we conclude that
m(P|k|) = m(Pk) and m(R|k|) = m(Rk), hence it is sufficient to establish the identity in
Theorem 2 and analyse the two polynomial families for positive real k only.

Our analysis of the three polynomial families is performed in Sects. 1–3, each section
devoted to one family. We compute the derivatives of the corresponding Mahler measures
with respect to the parameter k and make use of the easily seen asymptotics

m(Pk) = log |k| + o(1), m(Qk) = log |k| + o(1) and m(Rk) = log |k| + o(1) (2)

as |k| → ∞, to conclude about the equality of the Mahler measures themselves. This is
a strategy we have successfully employed before in [1]. Our findings provide one with the
reasons of why the ranges for k in Theorems 1 and 2 cannot be refined, and in Sect. 4 we
discuss some further aspects of this “expected noncoincidence.”

One of our reasons for linking the Mahler measures of hyperelliptic families Pk(x, y) and
Qk(x, y) to that of elliptic family Rk(x, y), not previously displayed, is a hope to actually
prove m(Rk) = ck L ′(Ek, 0) with ck ∈ Q× for some values of k. Armed with the recent
formula for the regulator ofmodular units [7] and its far-going generalisation for the regulator
of Siegel units [4] established by Brunault, such identities are expected to be automated in
the near future. The main obstacle to produce a single example for m(Rk) is of purely
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On the Mahler measure of hyperelliptic families 201

computational nature: the smallest conductor of the elliptic curve Ek one gets for k > 3,
k2 ∈ Z, is 224 = 25 × 7 when k = 4. We further comment on this circumstance and on a
related conjecture of Boyd for m(Q−1) in the final section.

1 The first family

We use the equality m(P|k|) = m(Pk) to reduce our analysis in this section to that for k ≥ 0.
Write Pk(x2, y) = x4 ˜Pk(x, y/x), where

˜Pk(x, y) = (x2 + x−2 + 1)y2 + k(x + x−1)y + (x2 + x−2 + 1)

= (x + x−1 + 1)(x+x−1 − 1)y2 + k(x + x−1)y + (x + x−1 + 1)(x + x−1 − 1)

= (x + x−1 + 1)(x + x−1 − 1)(y − y1(x))(y − y2(x))

and

{y1(x), y2(x)} = −k(x + x−1) ± √
�k(x)

2(x + x−1 + 1)(x + x−1 − 1)

�k(x) = k2(x + x−1)2 − 4((x + x−1)2 − 1)2.

ByViète’s theorem y1(x)y2(x) = 1 implying that |y1(x)| = |y2(x)| = 1 if�k(x) ≤ 0 and
|y2(x)| < 1 < |y1(x)| if �k(x) > 0, when we order the zeroes y1(x), y2(x) appropriately.
In the latter case

|y1(x)| = max{|y1(x)|, |y2(x)|} = k|x + x−1| + √
�k(x)

2|(x + x−1)2 − 1| > 1

and

|y2(x)| = min{|y1(x)|, |y2(x)|} < 1.

In notation x = eiθ , −π < θ < π , we let c = cos2 θ , so that c ranges in [0, 1]. Since
x + x−1 = 2 cos θ , we get

�k = 4k2c − 4(4c − 1)2 = −4(16c2 − (8 + k2)c + 1)

= −64(c − c−(k))(c − c+(k)),

where

c±(k) = 8 + k2 ± k
√
16 + k2

32
.

Because 0 < c−(k) < c+(k) < 1 for 0 < k < 3 and 0 < c−(k) < 1 < c+(k) if k > 3,
we have �k ≥ 0 iff c−(k) ≤ c ≤ min{1, c+(k)}. Note that

|y1(x)| = k
√
c + 4

√−(c − c−(k))(c − c+(k))

|4c − 1| .
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202 M. J. Bertin, W. Zudilin

Using Jensen’s formula and the symmetry y1(x) = y1(x−1), we obtain

p(k) = m(Pk(x, y)) = m(˜Pk(x, y))

= 1

(2π i)2

∫∫

|x |=|y|=1
log |˜Pk(x, y)| dx

x

dy

y

= 1

2π i

∫

|x |=1
log |y1(x)| dx

x

= 1

π i

∫

|x |=1
Im x>0

Re log y1(x)
dx

x

= 1

π i

∫

|x |=1
Im x>0

Re log
k|x + x−1| + √

�k(x)

2(x + x−1 + 1)(x + x−1 − 1)

dx

x

= 1

π i

∫

|x |=1
Im x>0

Re log
k|x + x−1| + √

�k(x)

2

dx

x

= 1

π
Re

∫ π

0
log

(

k| cos θ | +
√

−(16 cos4 θ − (8 + k2) cos2 θ + 1)
)

dθ, k > 0.

The derivative of the result with respect to k is

dp(k)

dk
= 1

π
Re

∫ π

0

| cos θ |
√−(16 cos4 θ − (8 + k2) cos2 θ + 1)

dθ

= 1

π
Re

∫ 1

−1

|t |
√−(16t4 − (8 + k2)t2 + 1)

dt√
1 − t2

= 2

π
Re

∫ 1

0

t
√−(16t4 − (8 + k2)t2 + 1)

dt√
1 − t2

= 1

π
Re

∫ 1

0

1
√−(16c2 − (8 + k2)c + 1)

dc√
1 − c

= 1

4π

∫ min{1,c+(k)}

c−(k)

dc
√

(c − c−(k))(c − c+(k))(c − 1)
,

which is a complete elliptic integral.
Performing additionally the change c = (4 − v)/16 we obtain

dp(k)

dk
= 1

π
Re

∫ 4

−12

dv
√−(v + 12)(v2 + k2v − 4k2)

= 1

π

∫ −k(k−√
k2+16)/2

max{−12,−k(k+√
k2+16)/2}

dv
√−(v + 12)(v2 + k2v − 4k2)

;

in particular, we have the following.

Proposition 1 For k ≥ 3,

dp(k)

dk
= 1

π

∫ −k(k−√
k2+16)/2

−12

dv
√−(v + 12)(v2 + k2v − 4k2)

. (3)
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2 The second family

The analysis here is very similar to the one we had in the paper [1]. First introduce
Qk+2(x, y) = x3 ˜Qk+2(x, y/x), where

˜Qk+2(x, y) = (x + x−1 + 1)y2 + (x2 + x−2 + (k + 2)(x + x−1) + 2k)y + (x + x−1 + 1)

= (x + x−1 + 1)y2 + (

(x + x−1)2 + (k + 2)(x + x−1) + 2(k − 1)
)

y

+ (x + x−1 + 1).

Write

˜Qk+2(x, y) = (x + x−1 + 1)(y − y1(x))(y − y2(x)),

where

{y1(x), y2(x)} = −Bk(x) ± √
�k(x)

2(x + x−1 + 1)

and Bk(x) = (x + x−1)2 + (k + 2)(x + x−1) + 2(k − 1),

�k(x) = Bk(x)
2 − 4(x + x−1 + 1)2

= (x + x−1 + 2)(x + x−1 + k − 2)((x + x−1)2 + (k + 4)(x + x−1) + 2k).

ByViète’s theorem y1(x)y2(x) = 1 implying that |y1(x)| = |y2(x)| = 1 if�k(x) ≤ 0 and
|y2(x)| < 1 < |y1(x)| if �k(x) > 0, when we order the zeroes y1(x), y2(x) appropriately.
In the latter case

y1(x) = −Bk(x) − sign(Bk(x))
√

�k(x)

2(x + x−1 + 1)
.

Note that

d

dk
log y1(x) = d

dk
log

(

Bk(x) + sign(Bk(x))
√

Bk(x)2 − 4(x + x−1 + 1)2
)

= d

dB
log

(

B + sign(B)
√

B2 − 4(x + x−1 + 1)2
)

∣

∣

∣

∣

B=Bk (x)
· dBk

dk

= − sign(Bk(x))
√

Bk(x)2 − 4(x + x−1 + 1)2
· (x + x−1 + 2).

With the help of Jensen’s formula we obtain

q(k + 2) = m(Qk+2(x, y)) = m(˜Qk+2(x, y))

= 1

(2π i)2

∫∫

|x |=|y|=1
log |˜Qk+2(x, y)| dx

x

dy

y

= 1

2π i

∫

|x |=1
log |y1(x)| dx

x

= 1

π i

∫

|x |=1
Im x>0

Re log y1(x)
dx

x

= 1

π
Re

∫ π

0
log y1(e

iθ ) dθ,
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leading to

dq(k + 2)

dk
= − 1

π
Re

∫ π

0

sign(Bk(eiθ ))
√

�k(eiθ )
(2 cos θ + 2) dθ

= − 1

π
Re

∫ 1

−1

sign(2t2 + (k + 2)t + k − 1)
√

4(t + 1)(2t + k − 2)(2t2 + (k + 4)t + k)

(2t + 2) dt√
1 − t2

= − 1

π
Re

∫ 1

−1

sign((t + 1)(2t + k) − 1)
√

(1 − t)(2t + k − 2)(2t2 + (k + 4)t + k)
dt.

Note that for k > 0 we have

2Re
∫ 1

−1
sign(2t2 + (k + 2)t + k − 1) = −

∫ (−k−4+√
16+k2)/4

−1
+

∫ 1

1−k/2
if 0 < k ≤ 3,

= −
∫ 1−k/2

−1
+

∫ 1

(−k−4+√
16+k2)/4

if 3 < k < 4,

=
∫ 1

(−k−4+√
16+k2)/4

if k ≥ 4.

Performing the change of variable t = (v + 2k(k + 1))/(v − 4k) we then obtain

dq(k + 2)

dk
= 1

π

(∫ −12

−∞
−

∫ k(1−k)

−k(k+√
16+k2)/2

)

dv
√−(v + 12)(v2 + k2v − 4k2)

if 0 < k ≤ 3,

dq(k + 2)

dk
= 1

π

(∫ −k(k+√
16+k2)/2

−∞
−

∫ k(1−k)

−12

)

dv
√−(v + 12)(v2 + k2v − 4k2)

if 3 < k < 4, and

dq(k + 2)

dk
= 1

π

∫ −k(k+√
16+k2)/2

−∞
dv

√−(v + 12)(v2 + k2v − 4k2)
(4)

if k ≥ 4.

Remark 1 The appearance of incomplete elliptic integrals
∫ k(1−k)

−k(k+√
16+k2)/2

dv
√−(v + 12)(v2 + k2v − 4k2)

and
∫ k(1−k)

−12

dv
√−(v + 12)(v2 + k2v − 4k2)

for k < 4 hints on why the Mahler measures q(k + 2) are possibly not related to the
corresponding L-values (see the question marks and the “half-Mahler” measures m′ in [2,
Table 9]). Our next statement refers to the situation when incomplete elliptic integrals do not
occur.

Proposition 2 For k ≥ 4,

dp(k)

dk
= dq(k + 2)

dk
.
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On the Mahler measure of hyperelliptic families 205

Proof We will show that
∫ −k(k−√

16+k2)/2

−12

dv
√−(v + 12)(v2 + k2v − 4k2)

=
∫ −k(k+√

16+k2)/2

−∞
dv

√−(v + 12)(v2 + k2v − 4k2)
(5)

for k > 3. On comparing the integrals in (3) and (4) this implies the required coincidence.
The involution

v 
→ −4(3v + 4k2)

v + 12

interchanges ∞ with −12 and −k(k + √
k2 + 16)/2 with −k(k − √

k2 + 16)/2. Applying
the change to one of the integrals in (5) we arrive at the other. ��
Proof of Theorem 1 Proposition 2 implies that p(k) = q(k + 2) + C for k ≥ 4, with some
constant C independent of k. On using the asymptotics (2) we conclude that C = 0, and the
theorem follows. ��

3 The third family

Since m(R|k|) = m(Rk), we assume that k ≥ 0 throughout the section.
For the elliptic family we write

−y3Rk
(

x/y, 1/(xy)
) = ˜Rk(x, y) = (x + x−1)y2 − ky − (x3 + x−3).

This time the zeroes y1(x) and y2(x) of the quadratic polynomial ˜Rk(x, y) satisfy

y1(x)y2(x) = − x3 + x−3

x + x−1 = −(x2 − 1 + x−2) = 3 − 4 cos2 θ.

We have

y1(x) = k + √

k2 − 16 cos2 θ (3 − 4 cos2 θ)

4 cos θ
,

y2(x) = k − √

k2 − 16 cos2 θ (3 − 4 cos2 θ)

4 cos θ
,

so that |y1(x)| ≥ |y2(x)|.
Lemma 1 If k ≥ 3 then �k(x) ≥ 0, so that both y1(x) and y2(x) are real.

If 0 ≤ k < 3 then y1(x) and y2(x) are complex conjugate to each other for

3 − √
9 − k2

8
< cos2 θ <

3 + √
9 − k2

8
,

so that |y1(x)| = |y2(x)| = |3−4 cos2 θ |1/2 in this case. Furthermore, |y1(x)| = |y2(x)| > 1
if and only if

3 − √
9 − k2

8
< cos2 θ <

1

2
for 0 ≤ k < 2

√
2,

3 − √
9 − k2

8
< cos2 θ <

3 + √
9 − k2

8
for 2

√
2 ≤ k < 3.
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206 M. J. Bertin, W. Zudilin

Proof Note that 16 cos2 θ (3 − 4 cos2 θ) ≤ max0≤c≤1 16c(3 − 4c) = 9, hence

�k(x) = k2 − 16 cos2 θ (3 − 4 cos2 θ) ≥ 0 if k ≥ 3.

The second part of the statement is a mere computation. ��

Lemma 2 If k ≥ 2
√
2 then |y1(x)| ≥ 1 for all x ∈ C : |x | = 1.

Proof Denote c = cos2 θ for x = exp(iθ), so that our task is to show that

|k +
√

k2 − 48c + 64c2| ≥ 4
√
c (6)

for 0 ≤ c ≤ 1. If k2 − 48c + 64c2 ≥ 0, meaning that either k ≥ 3 and c ∈ [0, 1] or
2
√
2 ≤ k < 3 and c ∈ [0, (3 − √

9 − k2)/8] ∪ [(3 + √
9 − k2)/8, 1], the inequality (6) is

equivalent to
√

k2 − 48c + 64c2 ≥ 4
√
c − k.

The latter inequality holds automatically when the right-hand side is nonpositive, that is,
when c ≤ k2/16. If c > k2/16 ≥ 1/2 then

√
c(1 − c) ≤ k

4

(

1 − k2

16

)

<
k

4
· 1
2

= k

8

implying that k2−48c+64c2 < (4
√
c−k)2 = k2−8k

√
c+16c, and the required inequality

follows.
If k2 − 48c + 64c2 < 0 then |y1(x)| = |y2(x)| = |y1(x)y2(x)|1/2 and

|k +
√

k2 − 48c + 64c2| = |3 − 4c|1/2.
The latter expression is ≥ 1 whenever 0 ≤ c ≤ 1/2; this indeed holds true for (3 −√
9 − k2)/8 < c < (3 + √

9 − k2)/8 since 2
√
2 ≤ k ≤ 3 in this case.

The required inequality (6) is thus established. ��

Lemma 3 If k ≥ 16/(3
√
3) = 3.0792 . . . then |y2(x)| ≤ 1 for all x ∈ C : |x | = 1.

Proof To verify that k − √
k2 − 48c + 64c2 ≤ 4

√
c, equivalently

√

k2 − 48c + 64c2 ≥ k − 4
√
c (7)

for 0 ≤ c ≤ 1, we first notice that the inequality is trivially true for c ≥ k2/16 since the
right-hand side is then nonpositive. If c < k2/16, the inequality (7) after squaring becomes
equivalent to 8

√
c(1 − c) ≤ k. The latter inequality holds true because the maximum of√

c(1 − c) is attained at c = 1/3 and is equal to 2/(3
√
3). ��

Proposition 3 If k ≥ 16/(3
√
3) then

dr(k)

dk
= 1

π

∫ 1

0

dc
√

c(1 − c)(k2 − 48c + 64c2)
. (8)
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Proof Using the two lemmas above we conclude that for values of k ≥ 16/(3
√
3) Jensen’s

formula gives us

r(k) = m(Rk(x, y)) = m(˜Rk(x, y)) = 1

2π i

∫

|x |=1
log |y1(x)| dx

x

= Re

(

1

2π i

∫

|x |=1
log

k + √

k2 + 4(x + x−1)(x3 + x−3)

2

dx

x

)

− m(x + x−1)

= 1

2π
Re

∫ π

−π

log
k + √

k2 − 16 cos2 θ (3 − 4 cos2 θ)

2
dθ

= 2

π
Re

∫ π/2

0
log

k + √

k2 − 16 cos2 θ (3 − 4 cos2 θ)

2
dθ

= 2

π
Re

∫ 1

0
log

k + √

k2 − 16t2(3 − 4t2)

2

dt√
1 − t2

which in turn implies that

dr(k)

dk
= 2

π
Re

∫ 1

0

1
√

k2 − 16t2(3 − 4t2)

dt√
1 − t2

= 2

π

∫ 1

0

1
√

k2 − 16t2(3 − 4t2)

dt√
1 − t2

.

It remains to perform the change c = t2. ��
If 0 < k < 16/(3

√
3) then the cubic polynomial f (t) = 8t3 − 8t + k has two real zeroes

on the interval 0 < t < 1, since f (0) = f (1) = k > 0 and f (1/
√
3) = k − 16/(3

√
3) < 0.

Denote them t1(k) < t2(k).

Lemma 4 If | cos θ | = |x + x−1|/2 = t1(k) then |y2(x)| = 1 for k ≤ 16/(3
√
3).

If | cos θ | = |x + x−1|/2 = t2(k) then

|y1(x)| = 1 for 0 < k ≤ 2
√
2 and |y2(x)| = 1 for 2

√
2 ≤ k ≤ 16/(3

√
3).

Proof Note that for the values of x corresponding to t1(k) and t2(k)we always have�k(x) ≥
0, so that both y1(x) and y2(x) are real. The solutions of |y1(x)| = 1 and |y2(x)| = 1
correspond to solving

k ±
√

k2 − 16t2(3 − 4t2) = 4t,

where t = | cos θ | = |x + x−1|/2. By elementary manipulations the latter equation reduces
to 8t3 − 8t + k = 0, and the remaining task is to distinguish whether we get |y1(x)| = 1 or
|y2(x)| = 1. We do not reproduce this technical but elementary analysis here. ��
Proposition 4 If 0 < k < 16/(3

√
3) then

dr(k)

dk
= 1

π

(∫ t1(k)2

0
+

∫ 1

t2(k)2

)

dc
√

c(1 − c)(k2 − 48c + 64c2)
, (9)

where t1(k) and t2(k), 0 < t1(k) < 1/
√
3 < t2(k) < 1, are the real zeroes of the polynomial

8t3 − 8t + k.
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208 M. J. Bertin, W. Zudilin

Proof To each x on the unit circle we assign the real parameter θ such that x = eiθ and real
parameter t = |x + x−1|/2 = | cos θ | ∈ [0, 1]. The analysis of Lemmas 1–4 shows that the
ranges of t that correspond to |y1(x)| ≥ 1 and |y2(x)| ≥ 1 are as follows: if 0 < k < 2

√
2

then

|y1(x)| ≥ 1 for t ∈ [0, 1/√2] ∪ [t2(k), 1] and |y2(x)| ≥ 1 for t ∈ [t1(k), 1/
√
2];

and if 2
√
2 ≤ k < 16/(3

√
3) then

|y1(x)| ≥ 1 for t ∈ [0, 1] and |y2(x)| ≥ 1 for t ∈ [t1(k), t2(k)].
Therefore,

r(k) = 1

2π i

∫

|x |=1
logmax{|y1(x)|, 1} dx

x
+ 1

2π i

∫

|x |=1
logmax{|y2(x)|, 1} dx

x

= 2

π
Re

(∫ 1/
√
2

0
+

∫ 1

t2(k)

)

log
k + √

k2 − 16t2(3 − 4t2)

4t

dt√
1 − t2

+ 2

π
Re

∫ 1/
√
2

t1(k)
log

k − √

k2 − 16t2(3 − 4t2)

4t

dt√
1 − t2

if 0 < k < 2
√
2 and

= 2

π
Re

∫ 1

0
log

k + √

k2 − 16t2(3 − 4t2)

4t

dt√
1 − t2

+ 2

π
Re

∫ t2(k)

t1(k)
log

k − √

k2 − 16t2(3 − 4t2)

4t

dt√
1 − t2

if 2
√
2 ≤ k < 16/(3

√
3). Differentiating r(k) we obtain

dr(k)

dk
= 2

π
Re

(∫ 1/
√
2

0
+

∫ 1

t2(k)
−

∫ 1/
√
2

t1(k)

)

1
√

k2 − 16t2(3 − 4t2)

dt√
1 − t2

if 0 < k < 2
√
2 and

= 2

π
Re

(∫ 1

0
−

∫ t2(k)

t1(k)

)

1
√

k2 − 16t2(3 − 4t2)

dt√
1 − t2

if 2
√
2 ≤ k < 16/(3

√
3); here we have observed that the additionally occurring integrals in

the process of differentiating vanish because Re log y j (x) = log |y j (x)| = 0 by Lemma 4 in
the corresponding cases.

Note that for both 0 < k < 2
√
2 and 2

√
2 ≤ k < 16/(3

√
3) the result is the same:

dr(k)

dk
= 2

π
Re

(∫ t1(k)

0
+

∫ 1

t2(k)

)

1
√

k2 − 16t2(3 − 4t2)

dt√
1 − t2

.

To complete the proof we apply the substitution t2 = c. ��
Remark 2 The integral in (8) is elliptic, while the integrals in (9) are incomplete elliptic:
the “completion” of the integrals will require integrating along c ∈ (0, (3 − √

9 − k2)/8) ∪
((3 + √

9 − k2)/8, 1) if 0 < k < 3 or c ∈ (0, 1) if 3 ≤ k < 16/(3
√
3) rather than along

c ∈ (0, t1(k)2) ∪ (t2(k)2, 1). The incompleteness serves as a reason for the Mahler measure
r(k) not to be rationally related to L ′(Ek, 0) for |k| < 16/(3

√
3).
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Proposition 5 For k positive real, k �= 3,

∫ 1

0

dc
√

c(1 − c)(64c2 − 48c + k2)
=

∫ −k(k−√
16+k2)/2

−12

dv
√−(v + 12)(v2 + k2v − 4k2)

.

(10)

Proof Applying the substitution

c = k(1 + t)

k + √
k2 + 16 + (k − √

k2 + 16)t

to the integral on the left-hand side we obtain
∫ 1

0

dc
√

c(1 − c)(64c2 − 48c + k2)

= √
2

∫ 1

−1

dt
√

(1 − t2)(k2 − 24 + k
√
k2 + 16 + (−k2 + 24 + k

√
k2 + 16)t2)

= 2
√
2

∫ 1

0

dt
√

(1 − t2)(k2 − 24 + k
√
k2 + 16 + (−k2 + 24 + k

√
k2 + 16)t2)

(after the change u = t2)

= √
2

∫ 1

0

du
√

u(1 − u)(k2 − 24 + k
√
k2 + 16 + (−k2 + 24 + k

√
k2 + 16)u)

.

Now the substitution

u = 2(v + 12)

−k2 + 24 + k
√
k2 + 16

into the latter integral results in the the right-hand side in (10). ��
Remark 3 For k > 0, k �= 3, the identity in Proposition 5 relates the periods of the elliptic
curves Ek in (1) (which is isomorphic to u2 = (v + 12)(v2 + k2v − 4k2)) and

̂Ek : d2 = c(1 − c)(64c2 − 48c + k2).

The curves Ek and ̂Ek are not isomorphic but the latter one happens to be a quadratic twist
of the former.

Proof of Theorem 2 The equality of elliptic integrals in (10) means that the derivatives of
p(k) and r(k) coincide for k ≥ 16/(3

√
3). Thus p(k) = r(k) +C for the range of k, and the

asymptotics (2) implies that C = 0 and finishes the proof of the theorem. ��

4 Accurateness of Theorem 2 and related comments

Though our Remarks 1 and 2 are aimed at explaining the choice of ranges for k in Theorems 1
and 2, in conclusion we would like to specifically address the difference between m(P3) and
m(R3). The choice k = 3 corresponds to a simultaneous degeneration in the families of
curves Pk(x, y) = 0 and Rk(x, y) = 0.
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The curve

P3(x, y) = (x2 + x + 1)y2 + 3x(x + 1)y + x(x2 + x + 1) = 0

has genus 1; it is isomorphic to the conductor 15 elliptic curve y2 + xy+ y = x3 + x2 which
has Cremona label 15a8 [6, Curve15.a7]. The proof of the evaluation

m(P3) = 1

6
L ′(χ−15,−1) = 0.99905183 . . . (11)

was given in [3, Example 3] (by two different methods!).
On the other hand,

R3(x, y) = (x + y − 1)(x2 − xy + y2 + x + y)

so that

m(R3) = m(x + y − 1) + m(x2 − xy + y2 + x + y)

= L ′(χ−3,−1) + m(x2 − xy + y2 + x + y).

Following the technology and notation in [3] to compute theMahler measure of A(x, y) =
x2 − xy + y2 + x + y, we first fix the rational parametrisation

x = t − 2

t2 − t + 1
, y = −t − 1

t2 − t + 1
,

and compute the resultant of A(x, y) and A∗(x, y) = x2y2A(1/x, 1/y):

Resy(A, A∗) = 3x2(x4 + x3 − x2 + x + 1).

The quartic polynomial has exactly two complex conjugate zeroes

x1 = 3 + i
√

5 + 2
√
13

1 + √
13

and x−1
1 of absolute value 1.The correspondingvalues of y satisfying |y| = 1 and A(x, y) = 0

are y = y1 = x−1
1 for x = x1 and y = x1 for x = x−1

1 . The pair (x1, y1) is generated by

t1 = 1 − i
√

5 + 2
√
13

2
.

Note that in this case

η(x, y) = η

(

t − 2

t2 − t + 1
,

−t − 1

t2 − t + 1

)

= dD

(

−
[

t + 1

3

]

+ 2

[

t + 1

ζ6 + 1

]

+ 2

[

t + 1

ζ−1
6 + 1

])

,

where the 1-form η(g, h) = log |g| d arg h−log |h| d arg g is attached to rational nonconstant
functions g and h and

D(z) = Im
∞
∑

n=1

zn

n2
+ arg(1 − z) log |z|
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denotes the Bloch–Wigner dilogarithm. Then by results in [3] theMahler measure of A(x, y)
is equal to

m(A) = 1

π

(

D

(

t1 + 1

3

)

− 2D

(

t1 + 1

ζ6 + 1

)

− 2D

(

t1 + 1

ζ−1
6 + 1

))

= 0.68844794 . . . .

The resulting measure m(R3) = 1.01151388 . . . visually appears to be different from (11)
confirming that m(Pk) �= m(Rk) at least for k = 3. Furthermore, m(R3) does not seem to be
a Q-linear combination of L ′(χ−3,−1) and L ′(χ−15,−1).

It would be interesting to establish the expected evaluation m(R4) = − 1
3 L

′(E224a, 0),
hence also for m(P4) andm(Q6), by using the recent formula of Brunault [4] for the regulator
of Siegel units. Note that the elliptic curve R4(x, y) = 0 does not possess a modular-unit
parametrisation (so that the formula from [7] is not applicable) and it is isomorphic to the
curve y2 = x3 + x2 − 8x − 8 which has Cremona label 224a2 [6, Curve224.a1].

Another related conjecture of Boyd [2, Eq. (3–12)] states that

m(Q−1) = 1

3
L ′(χ−7,−1) + 1

6
L ′(χ−15,−1) = 7

√
7

12π
L(χ−7, 2) + 5

√
15

8π
L(χ−15, 2).

Here Q−1(x, y) = 0 is an elliptic curve of conductor 210 = 2 × 3 × 5 × 7, which is
isomorphic to y2 + xy = x3 + x2 − 3x − 3 with Cremona label 210d1 [6, Curve210.a3].
Numerics indicates the lack of a modular-unit parametrisation in this case, though a suitable
parametrisation by Siegel units and the principal result from [4] are expected to confirm
Boyd’s observation for m(Q−1).
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